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Abstract:

W discuss the behavior of objects shared by several concurrent processes whose opera-

tions on the objects may overlap in time. Shared objects range from files in a distributed

database to a piece of hardware, e.g. a wire or a flip-flop. This wide range of opera-

tions share some common properties and fundamental limitations. These are of primary
importance in understanding the behavior of shared objects.

The specification of the behavior of shared objects under concurrent access includes

both functional and timing aspects. It is tempting to ignore or oversimplify timing, for

example by assuming that all operations have bounded response times, but this may

lead to contradictions. We-piepese- a new specification technique, based on predictor

automata, which captures both functional and timing behavior. r.. * . ,

1 Motivation A ) t' I

We discuss the behavior of objects shared by several concurrent processes whose oper-

ations on the objects may overlap in time. A shared object may take many different

forms, e.g. a file in a distributed database, a peripheral device, or a communication line.
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We consider two simple objects, a register and an arbiter, which can be found on all

levels of a distributed system, from the hardware to applications software.

A shared register supports two operations: write(v) (store the value v in the reg-
ister), and read (return the value last stored). A register may be a record of a file, it

may be a storage cell, or it may be a single bit. A correct sequential execution of these
operations satisfies the axiom:

{TRUE} write(v); r := read; {v = r}

When different operations on a register may overlap in time, the desired semantics is

less clear. What value should a read return when it overlaps with a write? The simple

solution of queuing all operations in order of arrival has several undesirable consequences.
In a multiprocessor, and particularly in a geographically distributed system, the order

of arrival may not be exactly determinable. Even if it is, a central queue may create a
severe bottleneck. It is, therefore, natural to consider a register that allows operations
which overlap in time. This raises the question of what a "correct behavior" of such a

register is, as the following options show: 1) delay a read until all writes are completed,

2) return a value distinct from all other values, to indicate that the register is in a
transient state, 3) return an arbitrary value. The last option leaves an implementor

much more freedom than the two first. He may face a variety of environments:

" a system without a common notion of time, where it may be impossible to decide

which of two operations came first,

" a system without control of the underlying hardware or software, which may rear-

range the operations,

" a system which cannot guarantee a bound on the time needed to complete an
operation,

" a system which optimizes the speed of some operations at the expense of others:
therefore, their duration may be orders of magnitude different.

0 The value returned by a read may be arbitrary at times, but must satisfy the semantics

Pj. of sequential execution when no operations overlap. In order to disqualify trivial imple-
mentations (e.g., always return the same value regardless of what has been written into

the register) we need to specify exactly when we do and do not care about the value

returned. The next section describes several previously published specifications.
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Two kinds of behavior must be distinguished: functional and timing behavior. The

first deals with "what" values are returned, the latter with "when" they are returned.

Several recent publications [4] [6] emphasize the functional behavior. In the next section
we analyze these definitions and show that contradictions may result from ignoring the

temporal behavior.

The above discussion was cast in the terminology of a "distributed system" existing

on top of several layers of software and hardware. This is the scenario most programmers

face when dealing with shared objects. Exactly the same issues must be addressed at

the lowest levels of hardware design. Here, the problems emerge when different parts of

the hardware coordinate their use of shared circuitry, which is necessary for any kind of

communication (at the very least a wire must be shared). In the next few sections we
use terminology aimed at this low level of hardware. This is to stress the fundamental

nature of the problems, and to avoid the unrealistic assumption, that lower levels can

be called upon to solve the problem.

2 Behavior of shared registers

The following three kinds of shared registers, have been defined by Lamport (4].

, A safe register: a read not overlapping any write returns the value last written,

and a read always returns a valid value, i.e. a value in the domain of the register

(0 or 1 in the case of 1-bit registers).

" A regular register: a safe register where a read overlapping a write must return

either the new or the old value of the register.

" An atomic register: reads and writes behave as if they were executed in some

serial order.

All three types of registers assumed that no process has to wait. The safe register is

the weakest and therefore also the simplest to implement. A regular register is stronger
than a safe one; but not as strong as the atomic register. Further characterizations of

a register can be made by defining its width and the number of readers and writers it

may have. Lamport argues that a 1-writer/i-reader/i-bit safe register is the weakest

that serves as a useful notion of computation.

Recently a number of papers have shown how registers that meet strong requirements ..

can be simulated with weaker ones [1] [2]. For example, an n-reader/i-writer atomic reg- ..

ister may be built from 1-reader/i-writer safe registers (using many safe shared registers
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to simulate one atomic shared register). All these papers claim that the algorithms work

without waiting (they use no busy waiting or other synchronization mechanisms). An

algorithm is said to be without waiting, if it uses a constant number of read or write

operations (on the weaker register used in the simulation). This is called the bounded
response time assumption.

[1] shows that a 2-writer/n-reader atomic register may be built out of 1-writer/i-

reader atomic registers. Hence, safe registers are powerful enough to build any other

type of register. This "final solution" points to the safe register as the basic building

block of a distributed system. We see a fundamental contradiction, however, in assuming

the existence of a 1-bit safe register with bounded response time.

3 The behavior of arbiters

4 A fundamental limitation of any physically shared object has been known for some time

[3][9]. To illustrate it, consider an arbiter which is a shared object with four operations
requestl, request2, grantl, and grant2. The arbiter grants permission to at most one

among two processes that request it. In case of conflict, it does not matter which request

is granted (fairness is not an issue for this discussion). The arbiter must, however, be

responsive: if only one process requests the resource, it gets the grant. There seems

to be common agreement that an arbiter which is guaranteed to make a decision in

bounded time cannot be built (out of electronic components). No matter how long one
waits, there is a non-zero probability that the arbiter has not yet made up its mind (for

example, when requests from two processes arrive so closely in time that they appear

simultaneous). Marino (5] has proved this under the assumption that all components can

be described by smooth functions, and (3] provides experimental verification. An arbiter

that may, with very low probability, wait arbitrarily long before making a decision is

* still a practically useful device: a linear increase in waiting time gives an exponential

decrease in the probability of finding the arbiter still undecided.

4 A contradiction

A comparison of the behavior of the shared objects discussed, the register and the arbiter.

leads to paradox.

Several algorithms exist for constructing an arbiter out of 2-writer/2-reader atomic

shared registers. The first, Dekker's algorithm, has since been simplified and extended
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in a number of papers, e.g. [8]. The key idea common to all algorithms is that an atomic
register can be used to break a tie between two requests. For example, by letting a
request operation write the identity of the process into an atomic register (often called

turn in the published algorithms).
Recall that all the shared register constructions referenced above involved no waiting.

It follows that an arbiter which is guaranteed to make a decision in bou nded time can
be built from safe 1-bit shared registers. This contradicts the argument of section 3 that
such an arbiter cannot be built. Where is the error? We believe the assumption of the
existence of 1-bit safe shared registers with bounded response time is at fault. In other
words, asynchronous access to physically shared registers implies:

@ either unbounded waiting for valid values,

* or bounded waiting for values that may be invalid.

An invalid bit looks high to some gates and low to others. This awkward physical real-
ity is avoided by waiting for the value to settle, which may delay an arbiter indefinitely.

Because the probability of an operation taking a very long time can be made negligible,
practical hardware design typically ignores this effect. As the design of high speed asyn-
chronous circuitry pushes the boundary of the feasible, a good theoretical specification
of shared objects with unbounded response times will be useful. We propose such a

model in the next section.

5 Operations with unbounded response time

We have argued that the assumption of bounded response time is unrealistic, that in any
consistent implementation of concurrent operations on shared data, the act of arbitrating
exclusive access, of "tipping the scales", can take an indefinite length of time. In a good
implementation, the probability of a long delay will decrease rapidly with increasing
response time, but need never become zero.

Several techniques have been developed to define the semantics of concurrent oper-

ations under the assumption of bounded response time (4][61. The case of unbounded
response time. on the other hand, does not appear to have been studied. We present
an approach to this problem, called probabilistic state transition analysis based

on predictor automata, a generalization of finite state machines. Predictor automata
model the behavior of an object under concurrent access at a similar level of generality as
finite automata model sequential circuits. The model is mathematically simple: it uses

. . .. . .. ..



concepts and techniques from elementary probability theory, linear algebra, and finite

automata. No physical assumptions are built into the model; rather, it is sufficiently

general to model objects with a wide range of physical behaviors. As an example, we

show how the same logical object can be modeled to exhibit different temporal behavior

during the transients between stable states, where each of these behaviors reflects a dif-

ferent physical implementation of the object. Probabilistic state transition analysis is a

further development of a technique developed in [7] to define the semantics of bounded

response time concurrency.

A predictor automaton P is given by:

" a finite set S = fsi ..... nl of states

" a finite set 0 = {o1,...,om} of operations (inputs)

" m transition matrices: Ml,...,Mm, where M' = [f (t)], and for each triple

(k,i,j) with 1 < k < m and 1 < i,j :_ n : f (t) is a real-valued function of,

t > 0 that satisfies all the following conditions:

1. f,(0)= 1 fori=jand f(0)-=0for ij

2. 0 < f4(t) : 1

3. Vk, i : E:,f(t) = 1.

The definition is motivated by the following interpretation. Consider an object which at

any moment is in one of a finite set of states: sl,...,s,t. At certain quiescent times we

may know the precise state of the object. When an input (an operation) is applied, the

object "gets ready" to change state according to a transition function f : S x 0 - S. In

contrast to conventional finite automata, we do not assume that this transition occurs

instantaneously; instead we assume that the transition may occur at any time after the

input is applied.

During the transients between stable states our knowledge of the object's current

state will be incomplete; but we aim to know the probability of it being in any one state.

Thus we introduce the concept of a probabilistic state as a vector, (Pi.....p,), where

p, 2! 0 is the probability of the object being in state s,, and Z p, = 1.

We interpret f (t) as the probability of finding the object in state s, at time t, given

that it was in state si at time 0 when input ok was applied, and that no other input has

been applied since t = 0. The intuitive significance of the conditions above can now be

stated as: 1) no instantaneous change; 2), 3) at any time t, the object is in some state

6
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In typical cases we might assume that the intended transition will indeed occur at

some time t by chosing functions f (t) that tend to 1 as t tends to infinity, perhaps

even monotonically. But we do not require this as a part of the definition, in order to
be able to model erratic behavior which, although undesirable, might occur and needs

to be studied.

5.1 Example: flip-flop

Consider a flip-flop with the two states high and low, and a probabilistic state

(Pt,gih,Piow) = [p,1 -p]. Consider the operations set (to high), reset (to low), and

negate (complement). Assume an object with the following physical behavior.

Persistence: If the operation does not require a change of state, the object remains in

its present state (e.g. there is no read/write cycle that temporarily destroys the
state before restoring it to the old value). This implies for the operations set and
reset: seth,gh high(t) = 1, and reset,,,: 0O(t) = 1.

Condition 3), which requires that each row of a transition matrix adds up to 1,

provides an equivalent way of stating the same requirement:

No spontaneous transitions. The object will not switch to any new state unless an oper-

ation requests such a state change. This implies for set and reset: sethigh 1o(t)

0, and reseto high(t) = 0.

Uniform monotonic transitions: If the operation requires a change of state from any
state s, to any state s. $ s,, the probability of finding the object in the target

state s, increases monotonically from 0 to 1 according to a switching function, f(t),

which is independent of the source state si, the target state sj, and the operation

ok. This implies:

setio, hgh(t) = resethgh lo,(t) = negatelo, hgh(t) = negateh.gA lo,(t) = f(t);

setow low( t) = reset high hgh(t) = negatelo, lo(t) = negatehigh hgh(t) = 1 - f(t).

The following vector*matrix multiplications show how each of the operations transforms

the probabilistic state of this flip-flop.

set:

* 1 0
s P. A -] f ) [p+ (1- p)f(t),(1 - p)(1 - f(t))]

f• (t) I - (t)



reset

0 1

negate:

[pl- p] -f At) f(t)1P,-f(t) A * f(t) -[p + (1 - 2p)f(t),(1 - p)- (1- 2p)f(t)]

Notice that with f(oo) = 1 these equations describe the logically correct behavior of a
flip-flop in its stable states.

5.2 Extensions and comparisons

It is of course possible to define standard concepts such as initial state and final states
(a deterministic state si being the special case pi = 1 of a probabilistic state (P, .... Pn)),
output function, and a language (a set of input strings) being accepted. We omit these
concepts as unnecessary for the present purpose.

Predictor automata differ from finite automata primarily by using the concept of
probabilistic state, and by replacing a deterministic transition function f : S x 0 - S
by probabilistic state transitions. Both of these generalizations have been made in a
number of studies on probabilistic automata. Predictor automata differ from the latter
by incorporating the notion of real time, as opposed to an artificial concept of time
measured by counting how many inputs have occurred. The name "predictor automata"
is chosen to express that: in the absence of any further inputs (disturbances) the object
may still undergo unknown transitions, but we have a probabilistic prediction of its state
at any future time.

The concept of real time allows us to model concurrent operations as those whose
duration overlaps in time. In other words, a new input may be applied before the
transients caused by the preceding input have died out. Introducing real time does not

imply that different processes that share an object can read or otherwise use this time:
in particular, we assume no common clock. Real time is merely a tool for analyzing the

* behavior of an object shared by concurrent processes.

5.3 Example: counter

A 0-1-2-3 counter consisting of two bits may be thought of as the series composition of
two one bit counters. A single operation tick increments the counter.

1-
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tick 0 1mm
lih E] i/h

This object has four states: 11, lh, hl, and hh, so a probabilistic state is (pit, plh, Phi, Phh)
(where Pit + PLh + Phi + Phh = 1). The operation tick is described by the matrix:

, i 1- (t) 1(t)
1- (t) f(t)

tick :
I - f(t) (t)

1

This counter gets stuck in the state hh once it gets there. A more useful modulo 4 counter
is obtained by replacing the last row of the matrix by the vector: If(t), 0, 0, 1 - f(t)
The transition matrices of both counters are compositions of corresponding matrices for

a flip-flop. In addition to series composition, parallel composition of predictor automata
can be defined in a way similar to well-known composition rules for finite state automata.

6 Behavior of shared objects

We propose the flip-flop specified above as an alternative to the safe register. We may use

a convention such as Phigh > threshold to model the flip-flop's state high, and similarly

for the state low. The response time of the object may be defined as the smallest t such

that Phigh(t) > threshold V pjo,#,(t) > threshold.
The arbiter can be modeled by a flip-flop with three states: low, undecided, and

high. A request from process 1 attempts to set the state to low, a request from process
2 attempts to set the state to high and a release will set the state to undecided. The
probabilistic state is: (PI, Pu,Ph). The operations may be specified as follows:

1 1-f(t) f(t)
requestl: f(t) 1- f(t) releasel : 1

• 1 1

request2 1 - f(t) f(t) release2 1

1 1f(t) 1- f(t)

For simplicity's sake, the same function f is used to describe the transition from the

undecided state to high (low) and the transition back to undecided. [9] argues that

* f(t) = 1 - e is a realistic approximation for an electronic circuit.

Note that the above does not describe an arbitration algorithm - it is merely a
specification of the behavior of a physically shared object used in such an algorithm.

A:: 9



7 Conclusion

The first part of this paper pointed out that unbounded response time is an inherent
property of all operations on shared objects. Concurrent processes experience delays not
only because one lucky process with access to a shared resource locks out others, but
also because the act of tipping the scales among processes competing for access takes
time. Section 4 shows that delays are inherent in any computation involving physically
shared objects.

The second part proposes a model, predictor automata, for describing the behavior
of shared objects under concurrent operations with unbounded response time. The
model is simple and technology-independent because it avoids introducing intermediate
physical states. Instead, it models transient behavior by the probability of being in any
one logical state.
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